Photoluminescent {SiC} Tetrapods


Magyar, Andrew P, Igor Aharonovich, Mor Baram, and Evelyn L Hu. 2013. “Photoluminescent {SiC} Tetrapods.” Nano Letters 13: 1210–1215.


Recently, significant research efforts have been made to develop complex nanostructures to provide more sophisticated control over the optical and electronic properties of nanomaterials. However, there are only a handful of semiconductors that allow control over their geometry via simple chemical processes. Herein, we present a molecularly seeded synthesis of a complex nanostructure, {SiC} tetrapods, and report on their structural and optical properties. The {SiC} tetrapods exhibit narrow line width photoluminescence at wavelengths spanning the visible to near-infrared spectral range. Synthesized from low-toxicity, earth abundant elements, these tetrapods are a compelling replacement for technologically important quantum optical materials that frequently require toxic metals such as Cd and Se. This previously unknown geometry of {SiC} nanostructures is a compelling platform for biolabeling, sensing, spintronics, and optoelectronics.