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I. SUPPLEMENTAL SECTIONS38

This supplemental material provides additional information on the experimental procedures, data analysis, and39

interpretation of results presented in the main text. We include additional measurements and simulations taken to40

support our main conclusions.41
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A. Electric Field Terms42

Electric field terms are neglected in the NV Hamiltonian presented in the main text due to their minimal contri-43

bution to the present study. The interaction between an external electric field and the NV − electronic spin state is44

described by the ground state Hamiltonian [S1]45

HE−field ≈ d‖EzSz + d⊥Ex(S2
y − S2

x) + d⊥Ey(SxSy + SySx) (S1)

Electric fields couple weakly to the NV ground state Hamiltonian due to the relatively small dipole moments d‖ ≈46

3.5 × 10−3 Hz/(V/m) and d⊥ ≈ 0.17 Hz/(V/m) [S1, S2]. Similarly to the stress contribution to the Hamiltonian,47

the perpendicular components of the electric field are suppressed by the application of an on-axis bias magnetic field48

Bz [S2].49

Consider an extreme situation where a changing chip function causes a change in potential of 1 V between traces50

separated by 10 µm. The resulting electric field in the gap between the traces is of the order 105 V/m. For on-51

axis electric field components this would lead to shifts in the NV zero-field splitting of 350 Hz. In addition, using52

the known temperature dependence of the NV zero-field splitting, ∂D/∂T ≈ −74 kHz/C [S3], this electric field53

induced shift of 350 Hz appears equivalent to a temperature change of 5 × 10−4 ◦C. The electric field contribution54

is consequently insignificant, and is thus neglected from the analysis in the main text.55

B. Simplification of Resonance Frequencies56

Equations 4, 5, and 6 of the main text proceed from the analysis presented in [S4] with the following simplifying57

assumptions and simplifications. Treating the off-axis magnetic fields as perturbative, the difference between the58

active and idle state ODMR resonance frequencies is given by [S4]:59

f±,i,Active − f±,i,Idle ≈
(
D +Mz +

∂D

∂T
∆T

)
+

3γ2
[
(Bx + ∆Bx)2 + (By + ∆By)2

]
2
(
D +Mz + ∂D

∂T ∆T
) ± γ(Bz + ∆Bz)

−(D +Mz)−
3γ2

(
B2
x +B2

y

)
2(D +Mz)

∓ γBz

(S2)

In the limit of D � ∂D
∂T ∆T , Mz the denominators in the off-axis magnetic field terms simplify to 2D, giving60

f±,i,Active − f±,i,Idle ≈
(
D +Mz +

∂D

∂T
∆T

)
+

3γ2
[
(Bx + ∆Bx)2 + (By + ∆By)2

]
2D

± γ(Bz + ∆Bz)

−(D +Mz)−
3γ2

(
B2
x +B2

y

)
2D

∓ γBz =
∂D

∂T
∆T +

3γ2
[
2Bx∆Bx + ∆B2

x + 2By∆By + ∆B2
y

]
2D

± γ∆Bz

(S3)

Terms on the order ∆B2
X and ∆B2

Y are negligible and can be ignored, as are terms dependent on off-axis magnetic61

fields given that γBX

D < 10−2. These terms only impact the common mode splitting (i.e., temperature measurements)62

and do not couple into measurements of BZ to first order, allowing for a further simplification to63

∆f±,i = f±,i,Active − f±,i,Idle ≈
∂D

∂T
∆T ± γ∆Bz (S4)

which is the result presented in the main text.64

C. Lorentzian Function65

The center frequencies of the measured ODMR resonance features are determined by fitting the spectra with66

Lorentzian curves. The relevant measurement parameter for magnetometry is the Lorentzian line center, denoted67

x0, which is extracted by fitting the data with a Lorentzian function given by [S5]:68

F = 1 + F0 +
C1γ

2

(x− x0 +A)2 + γ2
+

C2γ
2

(x− x0)2 + γ2
+

C3γ
2

(x− x0 −A)2 + γ2
(S5)

where F0 is an offset, C1, C2, and C3 are the contrast values for the different hyperfine features of a given resonance,69

γ is the resonance linewidth, x0 is the line center, and A is the hyperfine splitting treated as a constant 2.158 MHz.70

This fit is performed for each of the 8 (4 crystal axes and 2 electronic transitions) different resonance groupings.71

The contrast is treated as three different parameters for the three hyperfine features to account for differences due72

to extra small peaks from the forbidden hyperfine transitions [S6]. The resonances are sufficiently broadened by the73

MW power and high [N] of the diamond to allow for the linewidth to be treated as one parameter [S5].74
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D. Multimodal Imaging: Magnetic Field, Contrast, Linewidth, and Temperature75

The main text presents DC magnetic field maps of active FPGAs that are determined from the measured magnetic76

field-induced splitting of NV ODMR resonance line centers. Determining the value of the resonance line centers77

requires fitting Lorentzian functions to the measured ODMR resonance features as described in the previous section.78

An example of the Bz field image determined from fitting to the measured ODMR spectra in each camera pixel79

is shown in Figure S1(a). Fitting also extracts the Lorentzian linewidth and contrast [S7], which contain useful80

information about the properties of magnetic fields emanating from the circuit, and in future work can be used as81

additional inputs to machine learning models to fingerprint IC activity.82
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Supplemental Figure S1. QDM images of activity (idle and 200 ROs in Region 1) from the decapsulated FPGA, based
on various parameters emerging from the Lorentzian fit to NV ODMR spectra. (a) Images of the projection of magnetic field
onto NV axis one. (b) Resonance linewidth images show a strong dependence on other features like MW power, laser power,
strain gradients, time varying magnetic fields, and temporal variations that are fast relative to the measurement time. (c)
Resonance contrast images contain similar information to the linewidth, but are strongly influenced by variations in the laser
over the field-of-view. (d) Change in the average state dependent temperature is shown as a function of the number of active
ring oscillators in Region 1 (regions are defined in the main text.

The activity state-dependent linewidth is dependent on several physical phenomena including magnetic field and83

strain gradients within a pixel, variations in the magnetic field over the measurement time, and spatial variations84

in the laser, microwaves, and bias field. Figure S1(b) shows an example of the calculated linewidth images for the85

idle and 200 RO active states. As indicated by a white arrow in Figure S1(b), one can see the effect of a strong86

broadening mechanism, which is likely due to strong zero-mean time varying magnetic fields (since this feature does87

not appear in the magnetic field map in S1(a)). Similar types of features can be seen in the Lorentzian contrast88
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images of the idle and 200 RO state in Figure S1(c). However, due to the strong dependence of the contrast on89

optical power [S7] these maps are more sensitive to interference fringes. These fringes are likely due to reflections of90

the green laser from the passivation layer of the decapsulated chip.91

Temperature changes in the diamond are determined from common mode shifts of NV resonance line centers.92

The common mode shift for each pixel is calculated and then all the pixels are averaged together to give a single93

value for the bulk crystal temperature. The thermal conductivity of single crystal diamond is large enough that the94

diamond equilibrates to a uniform temperature on time scales much shorter than the measurement time. As such,95

wide field-of-view ensemble NV measurements in diamond are not well-matched for imaging temperature variations96

and are not suitable for determining regional activity on the IC based on thermal signatures. The changes in bulk97

crystal temperature can be used to improve state classification through understanding of power consumption in the98

chip, but do not allow for spatial selectivity.99

In future work, the multimodal information from the magnetic field maps, linewidth, contrast, and temperature100

will be used to create a more detailed fingerprint of IC activity. These physical parameters provide a rich dataset of101

features that afford further dimensionality for characterization and classification.102

E. Device Under Test Details103

The die of the Artix-7 FPGA is covered by roughly 500 µm of epoxy resin packaging material, separating the104

diamond from the die for the intact configuration. This stand-off distance leads to smaller field amplitude at the NV105

sensor layer and acts as a low-pass filter decreasing the effective QDM spatial resolution of FPGA current sources106

[S8]. To bring the diamond closer to the die, one of the Artix-7 FPGAs is decapsulated (decapped) using a Nisene107

JetEtch Pro CuProtect decapsulator (Fig. 2(c) in the maint text). This process uses fuming sulfuric and nitric108

acid to remove the packaging material, exposing the die while leaving the FPGA electrically functional, including109

preservation of the copper wirebonds.110

The structure of the wire-bonded Artix 7 die, shown in Fig. (d) in the main text, is optimal for studies of patterns111

of power delivery within the top metal layers of the FPGA. The thickest layers of the metal stack are usually closest112

to the top side of the package in wirebonded chips. These thick layers are used for power distribution due to their113

relatively low resistance characteristics compared to the other layers of the integrated circuit. Clock distribution114

networks and inputs/outputs (I/Os) occupy the next thickest layers, and data signals are in the lowest and thinnest115

metal layers. Prominent magnetic fields from the current densities in the power distribution network are therefore116

most easily detected with topside access of a wirebonded device. Magnetic field patterns from the lower-level data117

signals are likely not distinguishable with the present measurements. Note that Fig. 2(d) in the main text reveals118

large wire interconnects in the package substrate connecting the wirebonds and solder balls. These wires are deeper119

in the chip and are likely observable as low spatial frequency components in the magnetic field. As will be seen120

below, static fields from solder balls and other magnetic materials are also observable with the QDM; but can be121

distinguished from functional current flow by differential ring oscillator measurements.122

F. State Dependent Current Delivery to Development Board123

The global DC current delivered to the Nexys A7 development board is measured as a function of the number124

of active ROs to obtain an approximation of the current required by the FPGA for each state. The current was125

determined by measuring the voltage across a fixed resistance at the input of the development board. The time126

variation of the voltage was recorded on a fast (1 GHz) oscilloscope.127

The Nexys A7 contains many components in addition to the Artix 7 FPGA and has many processes running in128

parallel to the FPGA. The measured voltage is consequently dependent on other processes executing on the board129

that are independent of the FPGA activity. This results in a voltage signal full of extraneous spikes and other130

information, degrading confidence in the measurement of DC currents (see Fig. S2). The voltage was measured on131

the scope for 1 ms at a sampling rate of 1 GHz. The current was calculated through precise measurement of the132

resistance used.133

This process was repeated twice for each FPGA activity state, with ROs activated in Region 1. The resulting134

data is plotted in Figure S2. The error bars represent the standard deviation of the voltage over the 1 ms of signal135

acquisition. The current scales linearly with the number of ROs (0.055(6) mA per active RO) see Fig S2 The resultant136

linear fit is shown below.137

Itot = 0.055(6)(mA/RO)NRO + 125(4)mA (S6)

Assuming a simple model of the current being confined to a single wire-like structure and a stand-off distance of138

∼ 15µm yields approximate scaling of 500 nT/RO. This is likely an over-estimate because the currents are distributed139
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over many wires and there can additionally be cancellation from neighboring sources. The activity state dependent140

current measured at the input are not necessarily exactly representative of the state dependent current on the die141

due to the complexity of components on the development board interfacing between the FPGA and the external142

power supply. However, these measurements are useful for informing general trends of current consumption of the143

FPGA.144
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Supplemental Figure S2. Plot of the measured DC current delivered to the development board as a function of the number
of ROs active in Region 1 of the FPGA. The large error bars result from the activity of other components on the development
board, independent from the FPGA, that draw varying amounts of current over the duration of a given measurement.

G. Measured Noise Floor145

Properly calibrated and corrected measurements of a quiet subregion of the FPGA should result in a uniform146

magnetic field in all the pixels of the subregion. Any variation in the measured magnetic field across these pixels is147

a result of noise such as technical noise or more fundamental noise sources like shot noise. The dashed line in Figure148

S3(a) indicates one such low-activity subregion that is selected to exclude spatial current source variations of the idle149

state. The spatial noise floor is defined as the full-width-at-half-maximum of the histogram of magnetic field values150

of all the pixels in the subregion. Measurements over multiple experimental runs are averaged together to determine151

the magnetic field in each pixel. The histogram is plotted multiple times for a variable number of averaged runs. As152

the number of averaged runs increases, the width of the histogram narrows, demonstrating the suppression of noise153

with averaging over many runs.154

The spatial noise floor is thus an important figure-of-merit for characterizing QDM performance when measuring155

spatially varying, quasi-static magnetic fields. Twenty different data collection runs were utilized for this analysis.156

The mean and standard deviation for each pixel over these 20 measurements were calculated and plotted over the157

subsection field-of-view in Figure S3(b). The scaling of the noise floor as a function of number of runs for this dataset158

is indicated by a plotted histogram of the mean pixels after 1, 10, and 20 data collection runs. The high frequency159

spatial variation in the decapsulated (decap) data leads to a broader distribution of mean values. In contrast, the160

larger stand-off distance of the intact data allowed for more aggressive binning and Gaussian filtering to be utilized.161

This binning and filtering resulted in a lower noise floor for the intact data (2 nT) compared to the decap data (20162

nT). This noise floor is likely due to a combination of photon shot noise, laser intensity noise, and/or electronic noise163

from the camera.164

H. Measurement Duration and Sensitivity165

The duration of a given measurement is important for practical applications of the QDM and can limit feasibility166

of collecting large datasets needed for training more advanced machine learning models. A more detailed discussion167

on factors impacting measurement duration and bandwidth is given in Ref. [S9].168

Total measurement time is the net result of multiple factors including the camera exposure time, the number of169

camera frames averaged together per microwave (MW) frequency, the number of MW frequencies monitored, and the170

associated data transfer and processing time. The measurements presented in the paper have an exposure time of ∼4171

ms, which is sufficient to nearly saturate the pixel wells of the camera. Full-sensor readout, defined as using all camera172
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Supplemental Figure S3. (a)Dashed line indicates subset of pixels used for calculation of mean and standard deviation of
QDM performance when measuring spatially varying, quasi-static magnetic fields. This region of the FPGA is relatively quiet
while in the 0 RO/Idle State. (b) Mean and standard deviation of QDM imaged magnetic fields averaged over 20 runs, and
the noise floor achieved in the mean data as a function of number of runs averaged together. Width of the histogram gives
the noise floor: ∼ 20 nT for the Decap dataset measurements and ∼ 2 nT for the Intact dataset.

pixels, is used to measure the wide field-of-view while maintaining high spatial resolution. The full-sensor readout173

from the specific camera used in this study is about 6 ms and limits the fastest effective frame rate. Furthermore,174

this fixed readout time prevents the ability to increase the speed of measurements through decreasing the exposure175

time. Laser intensity variation over the duration of a measurement is generally a significant source of noise and each176

frame with MWs on is followed by a frame with MWs off to correct for this, doubling the time required for collecting177

data.178

Measuring the ODMR spectrum over many MW frequencies improves the fidelity of fitting to determine the179

magnetic field, and ameliorates large perturbations in the magnetic bias field, diamond strain, and temperature.180

Measuring many frequencies per ODMR resonance also minimizes linewidth and contrast variations from influencing181

the magnetic field reconstruction. Typically, 60-80 MW frequencies are swept to sample a span of approximately 10182

MHz for each ODMR resonance. The sweep covers 2 resonances for the single-axis measurements and 8 resonances183

for the 4-axis vector measurements. The ODMR spectrum is measured multiple times until the averaged spectrum of184

a single pixel has a signal to noise ratio of >10. For the single axis measurements this usually requires a measurement185

time of 5 minutes and for the 4-axis vector measurements this requires 20-30 minutes. Every measurement results186

in an ODMR spectrum for each of the ∼1200 × 1200 camera pixels. Given the measured noise floor of ∼ 20 nT187

for 20 measurements, a 5 minute duration per measurement gives an approximate volume normalized sensitivity of188

5 µTµm3/2 Hz−1/2 for all the pixels in the field-of-view. This experiment is optimized for a high dynamic range with189

high fit fidelity over a large field-of-view for thousands of measurements, motivating slower, more robust techniques to190

determine the FPGA state dependent magnetic fields. To compare with scanning techniques, the resulting effective191

measurement scan speed is 200 µs per pixel.192

The required measurement duration can be decreased by using a low magnification, high NA objective [S10] to193

allow for the acquisition of a large field-of-view with much higher photon collection efficiency [S11]. To take advantage194

of this larger photon flux, a camera is needed that can handle the increased photon rate [S9, S12]. Furthermore,195

fewer MW frequencies can be monitored to optimally sample the ODMR spectra [S13, S14], thereby minimizing the196

time spent sweeping MW frequencies. Measurements can be further sped up by decreasing the field-of-view; allowing197

for the excitation laser to be focused onto a smaller area, enabling the use of a higher magnification objective,198

and requiring readout from a fewer number of pixels. Further optimization is needed to achieve ∼kHz scale QDM199

magnetic imaging over mm fields of view.200
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I. Magnetic Field Image Slices201

Line plots of the magnetic field are shown in Fig. S4 to elucidate features associated with a subset of the magnetic202

field images in Figure 3a of the main text. Specifically, data for the magnetic field magnitude of each vector203

component is plotted along line cuts taken above, below, and at the location of the ring oscillators. The sign change204

of the magnetic field is easily observable above and below the ring oscillators for the ∆BX and ∆BZ image slices.205

ΔBX (μT) ΔBY (μT) ΔBZ (μT)
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-15
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Subregion
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Image
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Supplemental Figure S4. QDM vector magnetic field images of the decapsulated FPGA, a subset of images from Figure
3a in the main text for the decapped FPGA. (a) State dependent vector field images for 200 ROs active in Region 1. (b)
Slices (line cuts) of the vector magnetic field images from (a). Black, red, and blue lines in (b) correspond to slices in (a) and
are located above, below, and at the location of ring oscillator region R1, respectively.

J. Vector Magnetic Field Measurements of Additional Active Regions206

The decapsulated FPGA was programmed to have clusters of ROs activated in four distinct location-locked regions207

as shown in Figure S5(a). ROs were active in only one region at any time. The main text discusses two regions,208

R1 and R2, that were within the QDM field-of-view. The other two regions, R3 and R4, were outside of the QDM209

field-of-view, and were activated to search for extended indicators of regional activity.210

Figure S5(b) shows that activity state-dependent magnetic fields are evident for 200 ROs in R3 and R4, even211

though both regions are outside the measurement field-of-view. Figure S5(b) also reproduces the fields for 200 ROs212

in R1 and R2 presented in Figure 3 of the main text for comparison. These measurements take advantage of the213

extended current routing networks on the chip. One can start to infer some general trends about shared resources on214

the FPGA. For example, activation of 200 ROs in R1 and R3, both on the right side of the die, gives rise to strong215

∆BY fields in similar locations in the field-of-view.216

K. Larger Measurement Stand-off Distance Using a 40 micron NV Layer217

An additional 5 mm × 5 mm × 0.5 mm diamond was used in the QDM to probe an intermediate stand-off218

measurement distance for both the decapsulated and intact FPGAs. This diamond had a 40 µm surface layer of NV219

centers consisting of [12C] ∼ 99.95%, [15N] ∼ 10 ppm, and [NV] ∼ 1 ppm. The diamond was placed directly on the220

FPGA with the NV layer in contact with the FPGA surface. The thicker NV layer gives rise to a larger effective221
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Supplemental Figure S5. QDM vector magnetic field images of decapsulated FPGA (a) Location of the active RO regions
(red boxes) relative to the QDM field-of-view (grey box). (b) Spatial fingerprint of vector magnetic field maps for ROs active
in each of the four different regions.

stand-off distance because the average NV within the ensemble is farther away from the magnetic field source. The222

resulting magnetic field maps, shown in Figure S6, have coarser spatial resolution for the decapsulated measurements223

due to the larger stand-off distance. Consequently, the subtle features seen in data presented in the main text are224

no longer evident.225

Despite the lower resolution, such a diamond could be advantageous for the optimization of measuring intact ICs226

where the higher spatial frequencies are already suppressed by the large stand-off distance caused by the package.227

Also, a thicker NV layer will improve magnetic field sensitivity due to the larger number of total NVs contributing228

to the signal. Another feature of this diamond that can prove advantageous for future measurements is the larger,229

5 mm × 5 mm area of the diamond. These larger dimensions allow for a wider field-of-view showing, more of the230

activity from R1 and R2 simultaneously, as shown in Figure S6 in comparison to the figures in the main text.231

L. COMSOL Simulations232

The stand-off distance between the NV measurement plane and the magnetic field sources impacts the measurement233

sensitivity and spatial resolution. The FPGA contains multiple layers of interconnects: eleven metal layers in the234

silicon die and additional metal layers in the package of the FPGA that connect the bond wires to the ball grid235

array. These structures are visible in the SEM images of the FPGA cross section shown in Figure 2 of the main text.236

The metal layers in the silicon die have micron to sub-micron length scales, whereas the package interconnects have237

10-100 µm length scales.238

The current densities in these metal layers act as sources of the measured magnetic fields. The stand-off distance239

of the NV layer and the sources determines which metal layer contributions dominate. The NV layer was within240

∼ 5-10 µm of the top metal layer of the die and within 300 µm of the package interconnects for the decapsulated241

chip. The resulting field measurements were dominated by the close, top metal layer. The resin-epoxy layer of the242

intact chip increased the stand-off distance of the NV plane to 500 µm from the top metal layer and 800 µm from243

the package interconnects. The resulting field measurements for the intact chip were dominated by the large and244

distant package interconnects.245

This near- and far-field behavior of static magnetic fields is demonstrated using finite element analysis modeling246

with the commercial finite element software COMSOL 5.4 (Comsol, Inc.). The model geometry, depicted in Figure247
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Supplemental Figure S6. A diamond with a thicker NV layer was used to take the same vector magnetic field measurements
presented in Figure 3 of the main text for the decapsulated FPGA. The thicker NV layer results in a larger effective measurement
stand-off distance, resulting in lower resolution images of the spatial variation of the magnetic field.

S7, includes the 21.6 µm wide wires of the top metal layer with 12.6 µm inter-wire spacing and the 100 µm wide248

wires of the package interconnects with 100 µm inter-wire spacing. The two layers are defined in the X–Y plane and249

are separated in Z by the 300 µm of the silicon die. The governing magnetostatic equation ~∇×H = J is solved for250

the model geometry with µH = B, with a magnetic insulation boundary condition, n×A = 0 for B = ~∇×A, and a251

current of ∼10 mA applied with reverse bias on a subset of adjacent wires in each layer. The current magnitude was252

chosen to be similar to the measured current drawn by the board with 200 ROs active on the FPGA. A tetrahederal253

mesh was used consisting of elements half the size of the 12.6 µm wire spacing in the vicinity of the top metal layer,254

and scaled up for regions of the computational domain far away from the wires.255

The magnetic inductance B is solved for everywhere in the domain using COMSOL’s Magnetic Fields (mf) module.256

The calculation is completed in two stages: the current density in the wire domains is initially solved for using the257

applied current condition and the electrical conductivity of the wires, σ = 6e7 S/m; the current density is then used258

as the source term to determine the magnetostatic fields. Figure S7 plots the resulting magnetic fields for three cases:259260

(i) a current bias applied to the wires in both metal layers, (ii) a current bias applied to wires in only the top metal261

layer, (iii) a current bias applied only to wires in the package (bottom) layer. The resulting X–Y magnetic fields for262

each case are plotted at two Z stand-off distances, 25 µm and 500 µm, corresponding to the decapsulated and intact263

chip measurement configurations respectively. For the case of current applied to both metal layers, the magnetic264

fields from the small wires of the top metal layer are seen to dominate for the measurement plane with small stand-off265

distance, whereas the magnetic fields from the wires of the bottom interconnect layer are seen to dominate for the266

large stand-off distance. This is consistent with our interpretation of the NV measurements presented in the main267

text.268

M. Data for Low Number Active RO States269

Representative QDM images taken from a series of measurements for single acquisitions of low numbers of ROs are270

given in Figure S8 for decapsulated and intact chips. Long term drift and large background fields are corrected for271

by subtracting off the nearest idle (0 RO) state in the measurement series. The measured states of the decapsulated272

chip are relatively easy to classify by visual inspection, consistent with the perfect accuracy in classification presented273

in the main text. The differences between states are more subtle in the intact data for low number of active ROs.274

The high classification accuracy ( 80%) achieved in the main text for these states illustrates the value of the machine275

learning classifier.276
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Supplemental Figure S7. (a) COMSOL Simulations of magnetic fields from a configuration of two layers of metal wires
representing the small top metal layer (denoted metal layer 1) of the FPGA die and the large interconnect wires (denoted
metal layer 2) of the package. The simulations reveal that different features have an importance that is weighted by the
stand-off distance. Small, nearby sources dominate with small stand-off distance, and large, far away sources dominate with
large stand-off distance. (b) 3D visualization of the measurement planes relative to the position of the current sources.
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Supplemental Figure S8. Representative QDM images of single runs of activity states with small numbers of RO that are
used as inputs for the machine learning classification. The differences in the decapsulated chip states are observable through
inspection, but the intact chip state differences are more subtle.

N. Explained Variance of Principal Components277

Principal component analysis (PCA) is used as a dimensionality reduction tool to convert magnetic field images278

to a subset of projections (scores) along the first several principal components (PCs). These PCs are determined279

by sequentially finding axes that explain the most variance in a high-dimensional dataset such that these axes are280

orthogonal. Typically only a small number of scores are needed to describe a given instantiation of the dataset.281
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Supplemental Figure S9. (a) The fraction of variance explained by the nth principal component (PC) in the decapsulated
dataset (green dots) and the intact dataset (blue triangles). (b) The cumulative fraction of variance explained by the first n
PCs as a function of n (colors and markers are same as above). For both datasets, > 99% of the variance is explained by the
first 9 PCs.

Subsequent scores will only contain information about the noise in the data.282

Figure S9(a) shows the fraction of variance explained by the nth PC in both the decapsulated and intact datasets for283

the first 40 PCs. The first PC explains nearly all the variance in the magnetic field images, after which the explained284

variance drops off rapidly, ultimately depending only on noise and other RO state-independent information. Figure285

S9(b) shows the cumulative variance fraction for the first n PCs as a function of n. For the intact dataset, the first286

PC alone accounts for > 99% of the variance in the magnetic field images. For the decapsulated dataset, the first287

n = 9 PCs account for > 99% of the variance. The first n = 9 PC scores for each image are therefore used to capture288

all of the non-noise based information. These 9 scores are used to train the SVM classifier.289

O. Relative Importance of Each Principal Component290

Figure S10 shows all of the first 9 PCs used in the chip state classification for both the decapsulated and intact291

datasets. A relative classification importance (defined below) is also calculated for each PC. The first two PCs of292

both datasets most strongly resemble the magnetic field images. As such, these PCs can naively be assumed to be293

the most useful for state classification, which agrees with these PCs having the highest importance factor. Additional294

PCs that visually capture state-independent information accordingly have low importance. For example, PC 4 in295

the decapsulated dataset nicely captures the solder balls present in all magnetic field images, and PCs 6 through 9296

capture activity in the upper left corner that is also present in all images.297

In the intact dataset, PCs 4 through 9 appear noisy; however, PCs 7 and 9 both have a slightly elevated importance.298

The source of this importance is unknown, but given the small fields produced by the ROs on top of a larger299

background field, it is not surprising that PCs explaining a smaller fraction of data variance carry a higher importance300

in classification. The overall trend of decreasing importance with PC further strengthens the assertion that 9 PC301

scores suffice to classify each dataset.302

The definition of the relative classification importance requires details of a linear support vector machine (SVM)303

classifier. As described in the main text, linear SVMs seek to create a boundary between two classes, y ∈ {−1, 1},304

of an N dimensional dataset by finding the N − 1 dimensional hyperplane that maximizes the orthogonal distance305

from both classes. Any hyperplane is defined by its normal vector and a constant offset. For the optimal hyperplane306

boundary defined by the SVM classifier, we denote its normal vector as w and its constant offset as b. Any point, x,307

lying in this hyperplane will satisfy the equation308

w · x− b = 0 (S7)

The SVM classification, y′, of an arbitrary point, x′, will then be determined by whether this point lies above or309
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Supplemental Figure S10. The relative importance for support vector machine (SVM) classification of each of the 9
principal components (PCs) used in both the decapsulated and intact datasets. The PCs that contain the most state depen-
dent information have the most importance. Conversely, the PCs containing state independent information have the least
importance.

below this plane, written mathematically as310

y′(x′) = sgn(w · x′ − b) (S8)

We can interpret the normal vector, w, as a weighting vector for each dimension in the N dimensional space and311

thus define a relative classification importance, Ij , of the jth dimension as312

Ij =
|wj |∑N
j=1 |wj |

(S9)

In the case of M classes (where M > 2), a one-versus-one classification scheme is implemented, whereby each class313

is compared with every other class. This yields K = 1
2M(M − 1) hyperplane boundaries, each with a normal vector,314

wk, and a constant, bk, for k = 1, 2, . . . ,K. A simple pedagogical example (not used for QDM data analysis) with315

N = 2 dimensions (x1 and x2) and M = 3 classes (A, B, and C) is shown in Figure S11. N = 2 gives lines for the316

hyperplanes, and M = 3 gives K = 3 decision boundary lines. The red star represents a hypothetical new data point317

in need of classification. It will get classified as A twice and B once. The red star will consequently receive a final318

classification of A.319

The relative classification importance of the jth dimension for the kth one-versus-one comparison is defined as320

Ikj =
|wk,j |∑N
j=1 |wk,j |

(S10)

The overall relative classification importance of the jth dimension will then be given by321

Ij =

∑K
k=1 I

k
j∑N

j=1

∑K
k=1 I

k
j

(S11)
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Supplemental Figure S11. A simple SVM model (used ony as a pedagogical example) with N = 2 dimensions (x1 and x2)
and M = 3 classes (A, B, and C). Three lines represent the K = 3 hyperplane decision boundaries for each class comparison.
The red star represents a new data point in need of classification. It will get two votes for A and one vote for B and thus will
get a classification of A.

P. Additional PC Score Plots322

In addition to the PC 1 score versus PC 2 score plot shown in the main text, Figure S12 shows all 10 pairs of323

scores for PCs 1 through 5 in both the decapsulated and intact datasets. The scores are normalized by the number324

of pixels in each image (different for the decapsulated and intact datasets) so as to give an idea of the contribution325

of each PC to the magnetic field images.326

PCs that are useful in chip activity state classification are distinguishable from those that are not. For example, in327

the decapsulated dataset, PC 4 does not well separate differing numbers of ring oscillators (ROs), which is expected328

as it had the lowest importance factor of the first 5 PCs. Furthermore, PC 5 is useful in separating 1, 5, and 10 ROs,329

while PCs 1 and 2 are useful in separating 50, 100, and 200 ROs. In the intact dataset, PCs 1 and 2 are the most330

useful and PCs 4 and 5 are the least useful as expected from their high and low importance factors, respectively.331

Q. Hyperparameter Cross Validation332

When a training dataset contains outliers or is not linearly separable, the linear SVM classifier will struggle333

or even fail to find a hyperplane that will generalize well to predictions on the test set. To address this problem,334

implementations of SVM such as the scikit-learn class svm.SVC() used in this analysis will allow for some training335

samples to be misclassified in order to generalize well to the test set. The degree to which this is allowed is controlled336

by a regularization parameter, C. More precisely, a higher value of C attempts to correctly classify every training337

sample while a lower value of C will allow for more misclassifications of the training data. The regularization338

parameter thus represents a delicate balance between obtaining a good fit to the training set and generalizing well339

to the test set.340

In order to determine the optimal value of C, we employ a 10-fold cross validation (CV) procedure. The training341

set is divided into 10 equal parts (folds). The first fold is used as a validation set and the remaining 9 folds are used342

as a new training set. A value of C is chosen and the PCA + SVM model is fit using the new training set. The343

model is then evaluated on the validation set and the accuracy is recorded. This process is repeated until each of the344

10 folds have been used as the validation set. The CV accuracy for this value of C is then recorded as the average345

of the 10 validation accuracies. We repeat the entire process while varying C. Finally, we select the value of C that346

maximizes the CV accuracy and refit the model using all 10 folds as the training set. The test set containing as yet347

unseen data is then used to estimate the model accuracy by evaluating the final fitted model to this dataset.348
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Supplemental Figure S12. (a) Pairs of PC scores plotted against each other for PCs 1 through 5 in the decapsulated (decap)
dataset. Units are nT / pixel and active number of ring oscillators (ROs) is color coded according to the legend. (b) The
analogous plot for the intact dataset. Unlike the analogous plot in the main text, these plots are not on an equal aspect ratio
and thus the slopes of groups of points carry less meaning.

The decapsulated dataset is easily separated by SVM and thus does not require CV of the regularization parameter.349

On the contrary, the intact dataset is not as easily separated and thus does require CV; figure S13 shows the results350

of this procedure. The discretization of the accuracies results from the relatively small training/validation sets (i.e.351

each jump in accuracy corresponds to one more correct prediction in the validation set). A 21 point moving average352

is included to smooth out the CV prediction accuracy. It is evident from this curve that the optimal value of C353

occurs at about C = 6 and hence this value is chosen for the final model in the intact dataset.354
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Supplemental Figure S13. Cross validation of the SVM regularization hyperparameter, C. A 21 point moving average is
included to aid the eye. The optimal value is selected at C = 6.

R. Noise Propagation in PCA355

A better intuition for the spread of datapoints in the PC score plots is obtained from looking at the impact of two356

simple sources of extraneous variation on the value of the PC score. These sources are spatially uniform offsets (for357

example, this well approximates drifts in the bias field) and Gaussian noise. As defined in the main text, the PC358

score is359

Si,j =
1

MN

M∑
m=1

N∑
n=1

W i
m,nB

j
m,n (S12)

where each image is composed of M × N pixels, Bj is the magnetic field image, and Wi is the i’th principal360

component.361

A spatially uniform offset, ∆, is a constant value added to every pixel of an image, and can propagate through to362

the principal component analysis. The first two principal components of the decapsulated and intact chip analysis363

are used to explicitly determine the nature of ∆ propagation through the PC analysis. The addition of ∆ to a364

magnetic field image will result in an additional contribution, δ∆S
i,j , to the PC score giving365

Si,j + δ∆S
i,j =

1

MN

M∑
m=1

N∑
n=1

W i
m,n(Bjm,n + ∆)

=
1

MN

M∑
m=1

N∑
n=1

W i
m,nB

j
m,n +

1

MN

M∑
m=1

N∑
n=1

W i
m,n∆

(S13)

The first term is just the original score, Eq. S12, for the magnetic field Bjm,n, so δ∆S
i,j can be solved for directly.366

Since ∆ is a spatially uniform offset, it can be pulled out of the summation367

δ∆S
i,j =

∆

MN

M∑
m=1

N∑
n=1

W i
m,n (S14)

Each PC score will have a different value δ∆S
i,j from the offset ∆ due to the summation. The expected slope of368

the line for the PC2 versus PC1 plotted in Figure 5 of the main text is determined by δ∆S1/δ∆S2; this ratio gives369

a slope of -0.99, consistent with the slope in the figure. Any spatially uniform variations for a given FPGA activity370

state between different images will fall on a line with this slope. For the intact dataset, the principal components371

are different and the expected slope of variation is δ∆S1/δ∆S2 ∼ −3.03, which is consistent with the Figure 5 in the372

main text.373

The addition of spatial Gaussian noise (Xm,n) with zero mean and standard deviation α to a magnetic field image374
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Supplemental Figure S14. The impact of different noise sources on PCA, shown for an example of the QDM magnetic
image for 200 ROs on the decapsulated chip. (a) A spatially uniform offset of 10 nT is added between each point along the
line. (b) Gaussian noise with standard deviation of 100 nT is added. Note the dramatically different scales between the two
plots.

will result in an additional contribution to the PC score giving375

Si,j + δαXS
i,j =

1

MN

M∑
m=1

N∑
n=1

W i
m,n(Bjm,n + αXm,n)

=
1

MN

M∑
m=1

N∑
n=1

W i
m,nB

j
m,n +

1

MN

M∑
m=1

N∑
n=1

W i
m,nαXm,n

(S15)

Similar to Eq. S14, the contribution due to Gaussian noise can be separated, yielding376

δαXS
i,j =

α

MN

M∑
m=1

N∑
n=1

W i
m,nXm,n (S16)

The value and properties of this term depend on the precise spatial distribution of W i
m,nXm,n, so no general statement377

can be made on the impact of Gaussian noise. Figure S14 shows numerical simulations for these two different possible378

sources of variation, spatially uniform offsets and Gaussian noise. The plots confirm the general intuition from the379

results of the above derivations. In the specific case of PC1 and PC2 for the decapsulated and intact chips with380

α ≈ ∆, one then has δ∆S
i,j � δαXS

i,j .381

Further numerical simulations would be needed for other sources of variation including multiplicative noise, spa-382

tially varying offsets, etc., due to a strong dependence on the exact spatial features of the magnetic field images and383

principal component basis vectors.384
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