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Supplementary note 1: VV0 creation procedure 

In order to create VV0s in silicon carbide, it is necessary to create damage in the pristine lattice. 

To achieve this, we first send samples to the National Institutes for Quantum and Radiological 

Science and Technology in Takasaki, Japan. There the silicon carbide is electron irradiated with 

relativistic 2 MeV electrons that damage the lattice uniformly and create single vacancies. After 

subsequent annealing at ambient pressure with Argon gas at 850 oC for 30 minutes, the vacancies 

migrate and form stable VV0 complexes. This is similar to the NV center formation mechanism in 

diamond, where single carbon vacancies migrate until finding a substitutional nitrogen to form the 

NV center complex. At an electron radiation dose of 1016 electrons per square centimeter, we 

expect on the order of one VV0 per nanobeam mode volume. For the sample outlined in this study, 

we performed electron irradiation and annealing before the nanobeam fabrication process in order 

to confirm the presence of VV0s. 

 

Supplementary note 2: SiC doping 

Wafers were ordered commercially from Norstel and epitaxially grown to contain different doping 

layers. The SiC growth substrate is N-type 4H-SiC (12-30 mΩ·cm) with a 4 degree off-axis growth. 

The doping and thicknesses of the NINPN layers are as follows: 500 µm of standard N-type buffer 

(1e18 cm-3 N), 3 µm of P-type (1e18 cm-3 Al), 100 nm of N-type (1e18 cm-3 N), 200 nm of I-type 

(<1e15 cm-3 residual dopants), and 100 nm of N-type (1e18 cm-3 N). Ohmic contact is made 

uniformly on the back n-type surface using ~300 nm of NiCr (80/20) for PEC etching. This n-type 

contact is made ohmic using a Solaris 150 RTP rapid thermal annealer for a 5 minute anneal with 

an Ar flow under ambient pressure at 950 oC. 

 

Supplementary note 3: Fabrication 

Electron beam lithography was performed with a Raith EBPG5200 E-Beam lithography system 

with PMMA 495K A4 as a positive resist. Nickel was evaporated with an Angstrom NexDep 

Thermal E-beam evaporator. A PlasmaTherm ICP system was used for plasma etching of the SiC. 

We used a mixture of SF6 and Ar gases at 40 and 10 sccm, respectively, with a bias power of 90 

W and an ICP run power of 500 W at a process pressure of 6 mTorr. The SiC etch rate is roughly 

350-400 nm/min under these conditions. The sample was acid cleaned with a piranha solution of 

1:3 H2O2:H2SO4 followed by a 1:1 mixture of HF:HNO3. 

 



Supplementary note 4: Cavity tuning 

A cavity resonance tuning mechanism is necessary to achieve maximal coupling between a 

photonic cavity and an emitter. We are able to tune the cavity resonant wavelength through gas 

condensation from heating and cooling of the cryostat. Over time, the nanobeam slowly 

accumulates condensed gas particles, which has the effect of slowly redshifting the cavity 

resonance. When the sample is brought to a higher temperature of ~30-40K, condensation is 

released from the nanobeam and the cavity resonance blueshifts. When a separate cooling stage of 

the cryostat is heated while the sample stage is left cool, condensation onto the beam increases and 

the cavity resonance redshifts. Through this method we are able to tune the cavity into resonance 

with an intrinsic VV0 within a ~5 nm range, after which it remains stable for ~30 minutes. 

 

Supplementary note 5: VV0 nomenclature. 

The divacancy in silicon carbide consists of a silicon vacancy adjacent to a carbon vacancy. For 

the 4H-SiC crystal, the divacancy can have four orientations labeled as (hh), (kk), (hk), and (kh). 

In previous SiC defect nomenclature, the terminology PL1, PL2, PL3, PL4 has also been used for 

these four orientations, respectively. The h and k refer to inequivalent lattice sites in 4H-SiC 

corresponding to a hexagonal (h) or quasi-cubic (k) local crystal structure. For divacancy 

nomenclature, the first letter denotes the local structure of the carbon vacancy and the second letter 

denotes the local structure of the silicon vacancy. So, for example, the (kh) divacancy (also termed 

PL4) has a carbon vacancy at a quasi-cubic k site and an adjacent silicon vacancy at a hexagonal 

h site. The 4H-SiC polytype is labeled as 4H due to its 4-layer stacking (ABCB) of SiC bilayers 

and its hexagonal (H) crystal structure. Here, the letters ABC refer to the relative orientations of 

the silicon-carbon bilayers oriented along the [0001] c-axis. A and B are related by a translation, 

while C rotates the bilayer orientation by 60 degrees. The (hh) and (kk) divacancies are oriented 

along the c-axis of the lattice, while the (hk) and (kh) divacancies are oriented along basal 

directions. 

 
 
Figure S1 | 4H-SiC lattice and VV0 orientation. Every silicon carbide polytype can be composed by the appropriate repeating 

sequence of atomic bilayers. A single bilayer is defined here as a plane containing a silicon and carbon atom connected by c-axis 

oriented bond. The A bilayer is a translation of the B bilayer with no rotation, while a C bilayer is a 60 degree rotation of either the 

A or B bilayer. Here this is denoted as “twist” and “no twist”. 4H-SiC is then a hexagonal lattice that follows the general repeating 

sequence of ABCB. Equivalently, this can be rewritten as CBAB, BABC, or BCBA. Regardless of the notation, the B bilayer 

occurs every other bilayer. For divacancies, the first letter denotes the carbon vacancy lattice site and the second letter denotes the 

silicon vacancy lattice site. In the 4H-SiC lattice, the h (hexagonal) and k (quasi-cubic) lattice sites alternate between silicon-carbon 

bilayers. Additionally, there are four inequivalent divacancy orientations for 4H-SiC, as shown in the figure. 

    

    

    

    

             

             

             

            

 

 

 

         

        

         



Supplementary note 6: Bulk and nanobeam NINPN VV0  additional measurements 

     For comparison to the results obtained for the nanobeam VV0, we also collected data for a VV0 

in the intrinsic layer of the same NINPN-doped chip. We observe similar ZPL and ODMR shifts, 

indicating a uniform strain. Other defects in unpatterned regions of the chip displayed this same 

behavior. The improved optical linewidth of ~1 GHz and longer coherence times of 𝑇2
∗ ≈ 4 𝜇𝑠 and 

𝑇2 ≈ 200 𝜇𝑠 suggest that fabricated nanostructures can hinder defect properties, a result 

established from previous cavity-defect work. Additionally, the position of the VV0 within the 

intrinsically doped epilayer could cause coherence time variations based on the defect’s proximity 

to doped layers. 

     We also collected statistics for optical linewidths and center frequencies of "bulk" VV0s in the 

NIN epilayer and VV0s in suspended nanobeams, as given below. In general the unfabricated VV0 

defects displayed narrower optical linewidths, indicating that fabrication plays a role in affecting 

this metric. All VV0s displayed similar center frequencies, with a similar variance between bulk 

and nanobeam VV0s. 

 

Optical linewidths: 

Bulk (𝑛 = 16), 𝜇 = 1.37 𝐺𝐻𝑧, 𝜎𝑠𝑎𝑚𝑝𝑙𝑒 = 0.86 𝐺𝐻𝑧, range = 0.5 → 3.5 𝐺𝐻𝑧 

Nanobeam (𝑛 = 10), 𝜇 = 5.20 𝐺𝐻𝑧, 𝜎𝑠𝑎𝑚𝑝𝑙𝑒 = 2.50 𝐺𝐻𝑧, range = 2 → 10 𝐺𝐻𝑧 

 

Center frequencies: 

Bulk (n = 16), 𝜇 = 277.957 𝑇𝐻𝑧, 𝜎𝑠𝑎𝑚𝑝𝑙𝑒 = 39.52 𝐺𝐻𝑧, range = 106 𝐺𝐻𝑧 

Beam (n = 10), 𝜇 = 278.016 𝑇𝐻𝑧, 𝜎𝑠𝑎𝑚𝑝𝑙𝑒 = 34.03 𝐺𝐻𝑧, range = 126 𝐺𝐻𝑧 

 

 
Figure S2 | Characterization of a bulk NIN VV0. (a) Photoluminescence excitation (PLE), with 278.0015 THZ detuning. Optical 

linewidth from a Lorentzian fit is 825 ± 66 MHz with a 95% confidence interval (b) Optically detected magnetic resonance 

(ODMR) collected on the same defect with resonant optical excitation and a low magnetic field of ~1.2 G parallel to the c-axis. (c) 

Ramsey sequence collected at 218 G parallel to the c-axis with a 𝑇2
∗ confidence interval of 95% (b) Hahn echo sequence collected 

at 218 G with a 𝑇2 confidence interval of 95%. 

  

  



Supplementary note 7: Cavity defect coherence time measurements at low-field 

     For the nanobeam VV0 under a low magnetic field of ~6 G, we obtain coherence times of 𝑇2
∗ =

605 ± 33 𝑛𝑠 and 𝑇2 = 7.4 ± 0.6 𝜇𝑠, which are comparable to the high-field (218 G) values of 

𝑇2
∗ = 592 ± 18 𝑛𝑠 and 9.3 ± 2.0 𝜇𝑠 featured in the main text. This suggests that the nuclear spin 

bath is not the main cause for reduced coherence times in a nanostructure, but rather noise induced 

by nearby fabricated surfaces or doped layers. Additionally, in two separate measurements we 

observe spin relaxation times of 𝑇1 = 1.02 ± 0.47 ms and 𝑇1 = 2.43 ± 1.58 ms. Given the longer 

time scales for spin relaxation, limited averaging results in comparatively larger margins of error. 

Nevertheless, we are confident that the cavity VV0 has a lower bound of 𝑇1 ≳ 500 𝜇𝑠. 
 

 
Figure S3 | Coherence times of cavity VV0 at 6 Gauss. (a) Ramsey sequence with a 𝑇2

∗ confidence interval of 95% (b) Hahn 

echo sequence with a 𝑇2 confidence interval of 95% 
 

 
 
Figure S4 | Spin relaxation times of cavity VV0 at 6 Gauss. (a) 100 μs spin relaxation measurement with an exponential decay 

fit giving 𝑇1 = 1.02 ± 0.47 ms. (b) 1 ms spin relaxation measurement with an exponential decay fit giving 𝑇1 = 2.43 ± 1.58 ms. 
Both margins of error represent a 95% confidence interval. 
 

 

 

 

 

  

  



Supplementary note 8: Purcell enhancement of upper branch of cavity VV0 

 

     While the lower energy branch of the VV0 orbital fine structure displays a higher Purcell 

enhancement in the nanobeam cavity, it is also possible to tune the cavity into resonance with the 

upper branch. Doing so gives a Purcell factor of ~16, with the difference likely occurring due to 

the lowered spatial matching of the emission dipole with the cavity mode for the upper branch. 

 
Figure S4 | Purcell enhancement of upper branch of VV0. (a) Emission spectrum of the VV0 when excited with off-resonant 

905 nm laser light with the cavity on (inset, lower right) and off (inset, upper right) resonance with the higher energy branch. A 

ratio of emission intensities gives a Purcell factor of ~16. The on-resonance trace for the combined plot is vertically offset for 

clarity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary note 9: Cavity VV0 measurements with off-resonant optical excitation 

 

     For further characterization of the cavity VV0, we collected both a g(2) autocorrelation 

measurement and optically detected magnetic resonance (ODMR) using off-resonant optical 

excitation. The g(2) measurement features antibunching behavior indicative of a single emitter, with 

a higher g(2)(0) value of 0.374 due to increased background luminescence from other emitters, such 

as the NV center in SiC. The off-resonant ODMR trace features two Zeeman split resonances 

centered at 1.328 GHz as expected, with decreased photoluminescence (PL) when applying 

microwaves. This matches the behavior of a (hh) VV0, while the (kk) VV0 instead displays an 

increase in PL under resonance1. 

 
Figure S5 | Characterization of cavity VV0 with off-resonant optical excitation. (a) g(2)(t) autocorrelation measurement of the 

nanobeam VV0 taken with off-resonant 905 nm excitation, with a best fit (red) including the presence of a nonradiative state and a 

horizontal line (green) at g(2) = 0.5 indicating the upper threshold for a single emitter. The data contains 𝑔(2)(0) = 0.374 with no 

background subtraction and the best fit line gives 𝑔(2)(0) = 0.343. (b) Optically detected magnetic resonance (ODMR) collected 

with off-resonant 905 nm excitation under a ~25 G c-axis magnetic field to Zeeman split the resonances. 

 

 

Supplementary note 10: Discussion of cavity mode and dimensions 

 

     We used Lumerical FDTD Solutions in order to model the resonant modes of photonic crystal 

cavities, specifically for the 1D nanobeam structure. The high-Q design reported in the main text 

was obtained with the following dimensions: 

 

Beam width = 415 nm 

Beam thickness = 322 nm 

Hole radius = 83 nm 

Lattice spacing (hole-to-hole) = 337 nm 

 

     The central 8 holes of the nanobeam (4 on each side of the center) are linearly tapered to ellipses 

with a lattice spacing and a minor axis length of 84% of the bulk values, while the major axis 

diameter remains unchanged. In this design the major axis is oriented perpendicular to the length 

along the beam. Using this design with the above dimensions and a SiC material assumed to have 

a constant index of refraction of 2.58, we obtained a mode with a Q of ~3 ∙ 105 at a wavelength of 

1131 nm, which matches the (hh) and (kk) VV0 emission wavelengths. If we follow the ratio of 

these dimensions and scale the entire structure up or down, shorter and longer cavity resonant 

  



wavelengths can be achieved while maintaining a Q above 105. Thus, a structure with this 

approximate ratio of 1:4:4:5 for radius, lattice spacing, thickness, and width will yield a high-Q 

device. Outside of this particular ratio, cavity modes are supported over a wide range of dimensions 

and wavelengths, with quality factors typically in the 104-105 range. 

     Experimentally, the radius, lattice spacing, and beam width can be freely changed in the design 

of the electron beam pattern while the beam thickness is fixed at a maximum of 400 nm. This is 

due to the thickness of the SiC grown on top of the p-doped layer, which determines the depth of 

the undercut. Other thicknesses could be selected for future wafer growths, but we found 400 nm 

to be a good balance between flexibility for thinning, structural integrity of suspended beams, and 

capability to support near-IR cavity resonances as-grown. In the nanobeam studied in the main 

text, scanning electron microscope (SEM) images of the beam gives approximate measured 

dimensions of: 

 

Beam width = 450 nm 

Beam thickness = 400 nm 

Hole radius = 125 nm 

Lattice spacing (hole-to-hole) = 342 nm 

 

     Using these dimensions in Lumerical gives two modeled resonances: one at Q = 18,000 at 1077 

nm, and another with Q = 22,000 at 1103 nm. SEM images also reveal a sidewall slope of roughly 

86o, which has been previously modeled to blueshift cavity resonances2. Although we do not 

observe the modeled pair of resonances in our device, we do observe a resonance at ~1077 nm 

which matches the shorter wavelength. This resonance could also potentially be a blueshifted 

version of the 1103 nm resonance. The observed Q of 5,100 is lower than the theoretical Q's, which 

is common for photonic devices due to fabrication imperfections. 

     Additionally, this specific beam was originally designed to have a 500 nm width, a 105 nm hole 

radius, and a lattice spacing of 350 nm. While the lattice spacing roughly matches, discrepancies 

in the other dimensions can be attributed to systematic errors in fabrication and PEC etching. For 

example, we observe small ~5-10 nm shifts in the intended radius of holes after both the metal 

mask deposition/liftoff and the ICP etch of the SiC. PEC etching can also result in slight etching 

of the n-type or intrinsic SiC, which usually occurs after the p-type SiC has been etched away. 

While these systematic errors are being continuously addressed, the design of nanobeam cavities 

for this work was designed to have flexibility robust to this error. By fabricating a large array of 

cavities with varied dimensions, a subset of devices is highly likely to have a resonant mode at a 

desired wavelength. 

 

 

 

 

 

 

 

 

 

 

 



Supplementary note 11: Photoelectrochemical etching 

 

     Photoelectrochemical (PEC) etching was used to selectively etch p-type SiC to create undercut 

structures. Under the proper conditions, we observe selective PEC etching to work for both NINPN 

and IPN doping configurations. Generally, PEC etching requires UV illumination to create 

electron-hole pairs in the SiC, an applied voltage across the SiC chip to bias charge carriers towards 

or away from the surface, and an ionic solution to both form an electrical circuit and etch away 

oxidized SiC at the surface. We use a 1150 mW 365 nm LED focused through a lens as a UV 

source and a 0.2 M KOH mixture as an ionic solution. We apply voltage across the SiC chip 

between an Ohmic contact on the backside n-type surface and a platinum wire submerged in the 

KOH solution. A schematic of the PEC etching setup can be seen in Fig. s6. 

 

 
Figure S6 | Photoelectrochemical etching setup. A 4H-SiC sample (here with NINPN doped layers) is submerged in a 0.2 M 

KOH solution. electrical contacts are made with an electrical wire to Ohmic NiCr on the back of the chip and a platinum 

wire in solution. The voltage is varied so as to give a 5-10 µA photocurrent and is typically within a ±1 V range, although it 

could be positive or negative. A 365 nm UV LED is used as a UV source. 
 

     The voltage is set in order to achieve 5-10 µA of photocurrent, which is defined as the change 

in current that is observed when the UV source is turned on. Depending on the sample, this voltage 

lies within a ±1 V range. We find the 5-10 µA of photocurrent to be an ideal balance to achieve 

etch selectivity while maintaining a reasonable etch rate. PEC etch rates are typically on the order 

of 100 nm/hour, so a total etch time of 5-6 hours is typical for a sample. 

 

 

 

 

 

 

 

 

 

 
           

             

         

                      

 

                    
  1  

      



Supplementary note 12: g(2) rate equations 

 

We model the VV0's photoluminescence according to simplified three level system, as given in 

Fig. S5 below. 

 

 
Figure S7 | Three-level model of VV0 optical transitions. In this diagram, 𝒏𝟎 represents the ground state, 𝒏𝟏 represents the 

excited state, and 𝒏𝟐 represents an overall nonradiative state, which in practice is a combination of the inter-system crossing 

singlet state and ionized states of the VV0. Rates between these levels are denoted by 𝒈𝟎𝟏, 𝒈𝟏𝟎, 𝒈𝟏𝟐, and 𝒈𝟐𝟎. 
 

     Here, n0 represents the VV0 ground state, n1 represents the VV0 excited state, and n2 represents 

all intermediate states involved in nonradiative decays (e.g., different charge states and the 

intersystem crossing). The g01 rate is the optical pumping rate, and depends on the laser power. 

The g10 rate is the radiative decay rate, measured to be 15.7 ± 0.3 ns in the main text without 

Purcell enhancement and 5.3 ± 0.1 ns with enhancement. The g12 rate is the same as the 𝜏𝑑𝑎𝑟𝑘 state 

referred to in the main text, which represents all nonradiative transitions out of the excited state. 

The g20 rate represents all transitions from an intermediate state (such as a charged VV state or the 

VV0 ISC state) back to the VV0 ground state. We do not measure the g20 rate directly, although it 

plays a role in the overall photoluminescence brightness of the VV0. 

 

According to this three-level model, the dynamics of this system can be expressed as a system of 

differential equations: 

 

𝑛0
′ (𝑡) = −𝑔01𝑛0(𝑡) + 𝑔10𝑛1(𝑡) + 𝑔20𝑛2(𝑡) 

 

𝑛1
′ (𝑡) = 𝑔01𝑛0(𝑡) − 𝑔10𝑛1(𝑡) − 𝑔12𝑛1(𝑡) 

 

𝑛2
′ (𝑡) = −𝑔20𝑛2(𝑡) + 𝑔12𝑛1(𝑡) 

  

  

  

      

   

   



 

By setting the initial conditions set at the ground state: 

 

𝑛0(0) = 1, 𝑛1(0) = 0, 𝑛2(0) = 0 

 

We obtain a solution to the excited state population 𝑛1(𝑡) using Wolfram Mathematica, which 

gives: 

𝑛1(𝑡) =

𝑔01 exp (−
1
2
(𝑎1 + 𝑏)𝑡) (𝑎3(−1 + exp(𝑏𝑡)) + 𝑔20𝑏 (−1 − exp(𝑏𝑡) + 2 exp (

1
2
(𝑎1 + 𝑏)𝑡)))

2𝑎2𝑏
 

 

Where: 

𝑎1 = 𝑔01 + 𝑔10 + 𝑔12 + 𝑔20 
 

𝑎2 = 𝑔01𝑔12 + 𝑔20(𝑔01 + 𝑔10 + 𝑔12) 
 

𝑎3 = 𝑔20(𝑔10 + 𝑔12 − 𝑔20) + 𝑔01(2𝑔12 + 𝑔20) 
 

𝑏 = √𝑎1
2 − 4𝑎2 

 

Plotting this function, where |𝑡| is used as the input, gives the g(2) fits used in the main text and 

here in the supplement. For the g2 plot in the main text, the fit returns a g12 value of 16.48 ps–1, 

which corresponds to a lifetime of 𝜏𝑑𝑎𝑟𝑘 = 1/𝑔12 = 60.7 𝑛𝑠. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary note 13: Expressions for the Purcell factor 

 

13.1 Purcell factor in terms of cavity-emitter properties 

 

The full equation for the Purcell factor, including cavity-emitter matching, is given by: 

 

𝐹 = (
|�⃗� ∙ �⃗⃗�|

|�⃗�||�⃗⃗�𝑚𝑎𝑥|
)

2

(

 
 1

1 + 4𝑄2 (
𝜆𝑍𝑃𝐿
𝜆𝑐𝑎𝑣𝑖𝑡𝑦

)
2

)

 
 3𝑄

4𝜋2𝑉
(
𝜆𝑐𝑎𝑣𝑖𝑡𝑦

𝑛
)

3

+ 1 

 

Where 𝜇 is the electric dipole moment of the emitter, �⃗⃗� is the electric field from the emitter, �⃗⃗�𝑚𝑎𝑥 

is the maximum electric field from the cavity mode, 𝜆𝑍𝑃𝐿 is the wavelength of the ZPL, 𝜆𝑐𝑎𝑣𝑖𝑡𝑦 is 

the resonant wavelength of the cavity, 𝑄 is the cavity quality factor, 𝑉 is the cavity mode volume, 

and 𝑛 is the index of refraction of the material. The first term (
|�⃗⃗⃗�∙�⃗⃗�|

|�⃗⃗⃗�||�⃗⃗�𝑚𝑎𝑥|
)
2

 represents spatial overlap 

between the emitter and cavity mode, where both the position and orientation of the emitter play 

important roles for the overall coupling. The second term 1/ (1 + 4𝑄2 (
𝜆𝑍𝑃𝐿

𝜆𝑐𝑎𝑣𝑖𝑡𝑦
)
2

) represents 

spectral matching between the emitter and cavity. For higher Q cavities it becomes increasingly 

critical for the emitter wavelength to be matched with the cavity resonance. In the case of ideal 

coupling, both of these factors are one, and so the approximation 𝐹 ≈ 𝑄/𝑉 is commonly used to 

highlight the importance of high quality factors and small mode volumes. 

 

 

13.2 Purcell factor in context of this work 

 

For the purposes of this work, the definition of a Purcell factor as a ratio of emission rates3 applies 

to the zero-phonon line transition: 

 

𝐹 =
Γ𝑍𝑃𝐿,𝑜𝑛
Γ𝑍𝑃𝐿,𝑜𝑓𝑓

=
𝜏𝑍𝑃𝐿,𝑜𝑓𝑓

𝜏𝑍𝑃𝐿,𝑜𝑛
, (1) 

 

Where Γ𝑍𝑃𝐿,𝑜𝑛 and Γ𝑍𝑃𝐿,𝑜𝑓𝑓 are the ZPL emission rates on and off cavity resonance, while 𝜏𝑍𝑃𝐿,𝑜𝑛 

and 𝜏𝑍𝑃𝐿,𝑜𝑓𝑓 are the ZPL lifetimes on and off cavity resonance. It’s worth noting that equation (1) 

is equivalent to the statement that on resonance, the lifetime 𝜏𝑍𝑃𝐿 is modified as: 

 

𝜏𝑍𝑃𝐿,𝑜𝑛 =
𝜏𝑍𝑃𝐿,𝑜𝑓𝑓

𝐹
, (2) 

 

With this in mind, we can write expressions for the total optical lifetime of the VV0 emitter when 

on and off cavity resonance. When off resonance, the lifetime will be given by a combination of 

the ZPL transition, all phonon sideband (PSB) transitions, and all non-radiative dark state 

transitions: 



 
1

𝜏𝑜𝑓𝑓
=

1

𝜏𝑍𝑃𝐿
+

1

𝜏𝑃𝑆𝐵
+

1

𝜏𝑑𝑎𝑟𝑘
, (3) 

 

Where 𝜏𝑍𝑃𝐿 is the lifetime of the ZPL off cavity resonance, 𝜏𝑃𝑆𝐵 is the combined lifetime of all 

transitions into the phonon sideband, 𝜏𝑑𝑎𝑟𝑘 is the combined lifetime of all nonradiative decays, 

and 𝜏𝑜𝑓𝑓 is the measured lifetime of the VV0 when off resonance with the cavity. When the cavity 

is tuned into the resonance with the VV0 ZPL, the overall lifetime will be modified as given in eq. 

(2): 

 
1

𝜏𝑜𝑛
=

𝐹

𝜏𝑍𝑃𝐿
+

1

𝜏𝑃𝑆𝐵
+

1

𝜏𝑑𝑎𝑟𝑘
, (4) 

 

Where 𝜏𝑜𝑛 is the measured lifetime of the VV0 when on resonance with the cavity. Lastly, for 

upcoming derivations we will need an expression for the Debye-Waller (DW) factor. Given that 

this factor is the ratio of emitted light into the ZPL, we can express it in terms of lifetimes as: 

 

𝛼 =
𝜏𝑃𝑆𝐵

𝜏𝑍𝑃𝐿 + 𝜏𝑃𝑆𝐵
, Debye Waller factor, (5) 

 

Equations 1-5 can then be used to derive the Purcell factor equations listed in the main text, as will 

be outlined below. 

 

 

13.3 Purcell factor in terms of lifetimes 

 

Eq. (3) of the main text expresses the Purcell factor in terms of measurable lifetimes. To obtain 

this equation, we start by rearranging Eq. (2) to isolate the Purcell factor F: 

 

𝐹 = 𝜏𝑍𝑃𝐿 (
1

𝜏𝑜𝑛
−

1

𝜏𝑃𝑆𝐵
−

1

𝜏𝑑𝑎𝑟𝑘
) , (6) 

 

While this equation is analytically correct, it is difficult to directly measure values for 𝜏𝑍𝑃𝐿 and 

𝜏𝑃𝑆𝐵. To obtain these terms we can rearrange Eqs. (3) and (5) to give: 

 

𝜏𝑍𝑃𝐿 =
𝜏𝑜𝑓𝑓𝜏𝑑𝑎𝑟𝑘𝜏𝑃𝑆𝐵

(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)𝜏𝑃𝑆𝐵 − 𝜏𝑜𝑓𝑓𝜏𝑑𝑎𝑟𝑘
, (7) 

 

𝜏𝑃𝑆𝐵 =
𝜏𝑍𝑃𝐿𝛼

1 − 𝛼
, (8) 

 

Then, after substituting (7) into (8), we can rewrite 𝜏𝑍𝑃𝐿 and 𝜏𝑃𝑆𝐵 in terms of experimentally 

measurable quantities: 

 

𝜏𝑍𝑃𝐿 =
𝜏𝑑𝑎𝑟𝑘𝜏𝑜𝑓𝑓

𝛼(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)
, (9) 



 

𝜏𝑃𝑆𝐵 =
𝜏𝑑𝑎𝑟𝑘𝜏𝑜𝑓𝑓

(1 − 𝛼)(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)
, (10) 

 

Substituting (9) and (10) into (6) then gives F in terms of experimentally measurable quantities: 

 

𝐹 =
𝜏𝑑𝑎𝑟𝑘(𝜏𝑜𝑓𝑓 − 𝜏𝑜𝑛)

𝛼𝜏𝑜𝑛(𝜏𝑑𝑎𝑟𝑘 − 𝜏𝑜𝑓𝑓)
+ 1, (11) 

 

This is eq. (3) in the main text. It is also consistent with no enhancement corresponding to F = 1, 

as the quantity (𝜏𝑜𝑓𝑓 − 𝜏𝑜𝑛) goes to zero. 

 

 

13.4 Purcell factor in terms of Debye-Waller Factor 

 

Eq. (4) of the main text expresses the Purcell factor in terms of off- and on-resonance DW factors. 

To obtain this expression, we start with eq. (5) of this supplement: 

 

𝛼 =
𝜏𝑃𝑆𝐵

𝜏𝑍𝑃𝐿 + 𝜏𝑃𝑆𝐵
, Debye Waller factor, (5) 

 

And note that on resonance, we have: 

 

𝜏𝑍𝑃𝐿 →
𝜏𝑍𝑃𝐿
𝐹
, 𝛽 =

𝜏𝑃𝑆𝐵
𝜏𝑍𝑃𝐿
𝐹 + 𝜏𝑃𝑆𝐵

 

 

Where 𝛽 is the Debye-Waller factor on resonance. Substituting eq. (8) into this expression and 

rewriting gives: 

𝛽 =
𝐹𝛼

1 − 𝛼 + 𝐹𝛼
, (12) 

Isolating F then gives: 

𝐹 =
𝛽(𝛼 − 1)

𝛼(𝛽 − 1)
, (13) 

 

Which matches eq. (4) from the main text. Incidentally, eq. (12) can be used to estimate an 

enhanced DW factor for a given a Purcell factor, which is also done in the main text. 

 

A secondary estimate of the Purcell factor and enhanced DW factor is also done using the total 

off-resonant excitation (905 nm) counts on and off cavity resonance. Based on observed 

background subtracted count rates of 120 and 460 kCts/s, we say: 

 

𝛼 =
𝑍𝑃𝐿𝑜𝑓𝑓

𝑡𝑜𝑡𝑎𝑙𝑜𝑓𝑓
= 0.053, 𝑡𝑜𝑡𝑎𝑙𝑜𝑓𝑓 = 120 

 



𝛽 =
𝑍𝑃𝐿𝑜𝑛
𝑡𝑜𝑡𝑎𝑙𝑜𝑛

, 𝑡𝑜𝑡𝑎𝑙𝑜𝑛 = 460 

 

Where the numbers of 120 and 460 are meant to serve as relative measures for PL for off and on 

cavity resonance, and are chosen to be unitless for clarity. Continuing with this convention, the 

equation for 𝛼 can be rearranged to give: 

 

𝑍𝑃𝐿𝑜𝑓𝑓 = 𝛼 ∙ 𝑡𝑜𝑡𝑎𝑙𝑜𝑓𝑓 = 0.053 ∙ 120 = 6.36 

 

If we assume the increase of total counts on cavity resonance is solely due to increased counts into 

the ZPL, then we can say: 

 

𝑍𝑃𝐿𝑜𝑛 = 𝑍𝑃𝐿𝑜𝑓𝑓 + (𝑡𝑜𝑡𝑎𝑙𝑜𝑛 − 𝑡𝑜𝑡𝑎𝑙𝑜𝑓𝑓) = 6.36 + 340 = 346.36 

 

In total, the enhanced DW factor then matches the number given in the main text: 

 

𝛽 =
𝑍𝑃𝐿𝑜𝑛
𝑡𝑜𝑡𝑎𝑙𝑜𝑛

=
346.36𝑘

460𝑘
= 75.3% ≈ 75% 

 

Lastly, in the main text this number is used to obtain another measure of the Purcell factor. In this 

case, we reformulate eq. (1): 

 

𝐹 =
Γ𝑍𝑃𝐿,𝑜𝑛
Γ𝑍𝑃𝐿,𝑜𝑓𝑓

=
𝑍𝑃𝐿𝑜𝑛
𝑍𝑃𝐿𝑜𝑓𝑓

 

 

Which, using the numbers already obtained, gives: 

 

𝐹 =
346.36𝑘

6.36𝑘
= 54.46 ≈ 54 

 

Which gives the number reported in the main text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary note 14: Effect of strain on VV0 

 

14.1 Attribution of strain to nanobeam VV0 

 

     We attribute differences in both ZPL and ODMR between the nanobeam divacancy in the main 

text and a bulk (hh) VV0 to the existence of high strain around the defect, as strain can result in 

shifts in both the ground state and excited state Hamiltonians. Electric fields may also play a role 

given the proximity of n-doped layers, but the field strength should not be significant due to the 

symmetric configuration of doping. Additionally, previous work has only observed ~1 nm ZPL 

shifts and no ODMR change under the presence of built-in electric fields from a PIN SiC diode4. 

We also observe similar ZPL and ODMR shifts for defects in unpatterned regions of the NIN 

epilayer (see supplementary note 6), indicating that the attributed strain is present throughout the 

sample. This suggests that existing strain is due to growth conditions rather than fabricated 

nanostructures. More specifically, the incorporation of highly doped layers during growth of the 

NINPN epilayers is known to generate strain in the SiC lattice5–8. Given that intrinsically doped 

SiC can be grown while still maintaining a selectivity for a PEC undercut, it should be possible to 

lower the n-dopant levels to mitigate these effects in future work. 

     To quantify the amount of strain in the VV0's local environment, we incorporate the observed 

shift of the ODMR frequency into an analysis of the ground-state spin Hamiltonian (see below, 

14.2). This produces calculated strain values of 𝜀𝑥𝑥 = 𝜀𝑦𝑦 = −4.61 ∙ 10
−4 and 𝜀𝑧𝑧 = 3.64 ∙ 10

−4 

with zero shear, which is consistent with strain magnitudes found in SiC nanoparticles9. Given the 

similarity of spin-strain coupling dynamics between this system and the NV center in diamond, we 

can also obtain an approximate effect of this strain on the excited state using the NV center 

parameters as a proxy10 (see below, 14.3). This results in a predicted ZPL shift of -2.7 THz, which 

is within a factor of five of the -13 THz ZPL shift for the VV0 observed here. This factor is likely 

the result of comparatively higher excited state strain coupling parameters for the VV0. For 

example, in previous spin-strain work Lee et al. reported a ~850 THz/strain splitting for the |𝐸𝑥〉 

and |𝐸𝑦〉 states in the NV center10, while Falk et al. reported a larger ~2,900 THz/strain splitting 

for the corresponding |𝐸𝑥〉 and |𝐸𝑦〉 states in c-axis VV0s in SiC11. Therefore, we attribute the 

observed defect behavior to a (hh) VV0 with strain on the order of 10-4. 

 

 

14.2 Effect of strain on VV0 Hamiltonian and calculated strain values 

 

     To examine the effect of strain on VV0 behavior, it is useful to examine the spin basis for the 

VV0 ground state. The ground state spin-spin Hamiltonian for trigonal defects, ignoring the effects 

of nuclear spins and applied fields, is given by12: 

 

�̂�𝑔𝑠 = [
𝐷 0 𝐸
0 0 0
𝐸 0 𝐷

] 

Where 

𝐷 =
3

2
𝐷𝑧𝑧 , 𝐸 =

1

2
(𝐷𝑥𝑥 − 𝐷𝑦𝑦) 

 



Are determined from diagonal elements of the zero-field splitting tensor �⃡⃗�. Typically for c-axis 

(hh) and (kk) defects, no splitting of the ODMR spectrum is observed at zero-field, meaning the E 

term is zero. In the basal (hk) and (kh) defects, however, a significant zero-field ODMR splitting 

is observed. This corresponds E values of 82.0 MHz and 18.7 MHz for the (hk) and (kh) VV0s, 

respectively13. For the cavity VV0 studied in this work, we observe no transverse zero-field 

splitting, prompting us to use set the E term to zero: 

 

�̂�𝑔𝑠 = [
𝐷 0 0
0 0 0
0 0 𝐷

] 

 

This Hamiltonian gives eigenvalues and eigenvectors of: 

 

𝜆1 = 0, 𝑣1 = (
0
1
0
) , 𝑚𝑠 = |0〉 

 

𝜆2 = 𝐷, 𝑣2 = (
0
0
1
) , 𝑚𝑠 = |−1〉 

 

𝜆3 = 𝐷, 𝑣3 = (
1
0
0
) , 𝑚𝑠 = |+1〉 

 

     Here the |−1〉 and |+1〉 states are degenerate under zero magnetic field, which manifests itself 

as a single resonance under an ODMR scan. As we add strain to this system, D becomes modified 

due to changes in the �⃡⃗� tensor. To quantify the full effect of strain on the elements of �⃡⃗�, it is 

necessary to use the spin-strain coupling tensor 𝐺, which follows the relation14: 

 

(

 
 
 
 

∆𝐷𝑥𝑥
∆𝐷𝑦𝑦
∆𝐷𝑧𝑧
∆𝐷𝑦𝑧
∆𝐷𝑥𝑧
∆𝐷𝑥𝑦)

 
 
 
 

= �⃗⃗⃡�

(

 
 
 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
2𝜀𝑦𝑧
2𝜀𝑥𝑧
2𝜀𝑥𝑦)

 
 
 
, (14) 

Or, more explicitly, 

 

(

 
 
 
 

∆𝐷𝑥𝑥
∆𝐷𝑦𝑦
∆𝐷𝑧𝑧
∆𝐷𝑦𝑧
∆𝐷𝑥𝑧
∆𝐷𝑥𝑦)

 
 
 
 

=

(

 
 
 
 

𝐺11 𝐺12 𝐺13 𝐺14 0 0
𝐺12 𝐺11 𝐺13 −𝐺14 0 0

−𝐺11 − 𝐺12 −𝐺11 − 𝐺12 −2𝐺13 0 0 0
𝐺41 −𝐺41 0 𝐺44 0 0
0 0 0 0 𝐺44 𝐺41

0 0 0 0 𝐺14
𝐺11 − 𝐺12

2 )

 
 
 
 

(

 
 
 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
2𝜀𝑦𝑧
2𝜀𝑥𝑧
2𝜀𝑥𝑦)

 
 
 

 

 



Where ∆𝐷𝑖𝑗 represent changes in elements of �⃡⃗� due to strain terms 𝜀𝑖𝑗. The individual terms of 𝐺 

have not been experimentally measured for c-axis divacancies in silicon carbide, but have been 

computed using DFT calculations to match observed D values14. The 𝐷 =
3

2
𝐷𝑧𝑧 term determines 

the center of the zero-field ODMR spectrum, which is 1.328 GHz for our sample. The shift from 

the expected 1.336 GHz value for a (hh) VV0 then gives ∆𝐷𝑧𝑧 = −5.33 MHz. To fully solve for 

the expected strain, we also set ∆𝐸 =
1

2
(∆𝐷𝑥𝑥 − ∆𝐷𝑦𝑦) to zero to be consistent with our 

observations. We can also impose the fact that �⃡⃗� is traceless to say 𝐷𝑥𝑥 + 𝐷𝑦𝑦 + 𝐷𝑧𝑧 = 0. Lastly, 

we set the mixed �⃡⃗� terms to zero, meaning ∆𝐷𝑦𝑧 = ∆𝐷𝑥𝑧 = ∆𝐷𝑥𝑦 = 0, as we do not expect high 

levels of shear in our sample. The combination of these constraints then gives a unique solution 

for the strain. Using Eq. (14), we obtain the strain values of: 

 

𝜀𝑥𝑥 = 𝜀𝑦𝑦 = −4.61 ∙ 10
−4, 𝜀𝑧𝑧 = 3.64 ∙ 10

−4, 𝜀𝑦𝑧 = 𝜀𝑥𝑧 = 𝜀𝑥𝑦 = 0 

 

It is worth noting that despite these strain values, the 𝑚𝑠 = −1,0, +1 basis remained unchanged 

due to the unchanging 𝐸 =
1

2
(𝐷𝑥𝑥 − 𝐷𝑦𝑦) = 0 term. 

 

 

14.3 Corroboration of strain with diamond NV center parameters 

 

     To corroborate the plausibility of these strain magnitudes, we can examine their approximate 

effect on the excited state. For defects with C3v symmetry, strain is known to both shift and split 

the frequency of the zero-phonon line15. While the excited state strain coupling constants for the 

VV0 are not known, they have been measured for the NV center in diamond10 and we expect the 

VV0 excited state spin strain coupling to follow similar dynamics. Using the {|𝐴〉, |𝐸𝑥〉, |𝐸𝑦〉} states 

as a basis, the excited state NV center Hamiltonian can be written as10,15: 

 

𝐻𝑠𝑡𝑟𝑎𝑖𝑛 = [𝑓𝑍𝑃𝐿 + 𝜆𝐴1𝜖𝑧𝑧 + 𝜆𝐴1′ (𝜖𝑥𝑥 + 𝜖𝑦𝑦)] × [|𝐸𝑥〉〈𝐸𝑥| + |𝐸𝑦〉〈𝐸𝑦|] 

 

+[𝜆𝐸(𝜖𝑦𝑦 − 𝜖𝑥𝑥) + 𝜆𝐸′(𝜖𝑥𝑧 + 𝜖𝑧𝑥)] × [|𝐸𝑥〉〈𝐸𝑥| − |𝐸𝑦〉〈𝐸𝑦|] 

 

+[𝜆𝐸(𝜖𝑥𝑦 + 𝜖𝑦𝑥) + 𝜆𝐸′(𝜖𝑦𝑧 + 𝜖𝑧𝑦)] × [|𝐸𝑥〉〈𝐸𝑦| + |𝐸𝑦〉〈𝐸𝑥|] 

 

Where the orbital-strain-coupling constants 𝜆𝐴1 , 𝜆𝐴1′ , 𝜆𝐸 , and 𝜆𝐸′ have been measured for the NV 

center to be: 

 

𝜆𝐴1 = −1.95 ± 0.29 𝑃𝐻𝑧/𝑠𝑡𝑟𝑎𝑖𝑛 

 

𝜆𝐴1′ = 2.16 ± 0.32 𝑃𝐻𝑧/𝑠𝑡𝑟𝑎𝑖𝑛 

 

𝜆𝐸 = −0.85 ± 0.13 𝑃𝐻𝑧/𝑠𝑡𝑟𝑎𝑖𝑛 

 

𝜆𝐸′ = 0.002 ± 0.01 𝑃𝐻𝑧/𝑠𝑡𝑟𝑎𝑖𝑛 

 



For our calculated strain values, only the shift in ZPL will be nonzero, corresponding to the first 

term: 

 

𝐻𝑠𝑡𝑟𝑎𝑖𝑛 = [𝑓𝑍𝑃𝐿 + 𝜆𝐴1𝜖𝑧𝑧 + 𝜆𝐴1′ (𝜖𝑥𝑥 + 𝜖𝑦𝑦)] × [|𝐸𝑥〉〈𝐸𝑥| + |𝐸𝑦〉〈𝐸𝑦|] 

 

Plugging in our predicted strain values then gives: 

 

∆𝑓𝑍𝑃𝐿 = 𝜆𝐴1𝜖𝑧𝑧 + 𝜆𝐴1′ (𝜖𝑥𝑥 + 𝜖𝑦𝑦) = −1950 ∙ 𝜖𝑧𝑧 + 2160(𝜖𝑥𝑥 + 𝜖𝑦𝑦) 𝑇𝐻𝑧 

 

∆𝑓𝑍𝑃𝐿 = (−1950(3.639 ∙ 10
−4) + 2160(2 ∙ −4.611 ∙ 10−4)) 𝑇𝐻𝑧 

 

∆𝑓𝑍𝑃𝐿 ≈ −2.7 𝑇𝐻𝑧 

 

Which is the value reported above in 14.1.  
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